
Introduction to OpenMP

Lecture 4: Parallel loops

Work sharing directives

• Directives which appear inside a parallel region and indicate how
work should be shared out between threads

-Parallel do/for loops
-Single directive
-Sections directive

3

Parallel do loops
• Loops are the most common source of parallelism in most codes.

Parallel loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between
threads.

• The loop directive appears inside a parallel region and indicates that
the work should be shared out between threads, instead of replicated

• There is a synchronisation point at the end of the loop: all threads
must finish their iterations before any thread can proceed

4

Parallel do/for loops (cont)
Syntax:
Fortran:

!$OMP DO [clauses]
do loop

[!$OMP END DO]
C/C++:

#pragma omp for [clauses]
for loop

5

Restrictions in C/C++
• Because the for loop in C is a general while loop, there are

restrictions on the form it can take.

• It has to have determinable trip count - it must be of the form:
for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=
and incr-exp is var = var +/- incr or semantic
equivalents such as var++.
Also cannot modify var within the loop body.

6

Parallel loops (example)
Example:
!$OMP PARALLEL
!$OMP DO

do i=1,n
b(i) = (a(i)-a(i-1))*0.5

end do
!$OMP END DO
!$OMP END PARALLEL

#pragma omp parallel

{

#pragma omp for

for (int i=0;i<n;i++){

b[i] = (a[i]*a[i-1])*0.5;

}

}

7

Parallel DO/FOR directive
• This construct is so common that there is a shorthand form which

combines parallel region and DO/FOR directives:
Fortran:

!$OMP PARALLEL DO [clauses]
do loop

[!$OMP END PARALLEL DO]
C/C++:

#pragma omp parallel for [clauses]
for loop

8

Clauses
• DO/FOR directive can take PRIVATE , FIRSTPRIVATE and

REDUCTION clauses which refer to the scope of the loop.

• Note that the parallel loop index variable is PRIVATE by
default
-other loop indices are private by default in Fortran, but not in

C.

• PARALLEL DO/FOR directive can take all clauses available
for PARALLEL directive.

• Beware! PARALLEL DO/FOR is not the same as DO/FOR or
the same as PARALLEL

9

Parallel do/for loops (cont)
• With no additional clauses, the DO/FOR directive will partition the

iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some
ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

10

SCHEDULE clause
• The SCHEDULE clause gives a variety of options for specifying which

loops iterations are executed by which thread.
• Syntax:
Fortran: SCHEDULE (kind[, chunksize])
C/C++: schedule (kind[, chunksize])
where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME
and chunksize is an integer expression with positive value.
• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

11

STATIC schedule

• With no chunksize specified, the iteration space is divided into
(approximately) equal chunks, and one chunk is assigned to each
thread in order (block schedule).

• If chunksize is specified, the iteration space is divided into chunks,
each of chunksize iterations, and the chunks are assigned cyclically
to each thread in order (block cyclic schedule)

12

STATIC schedule

13

DYNAMIC schedule

• DYNAMIC schedule divides the iteration space up into chunks of size
chunksize, and assigns them to threads on a first-come-first-served
basis.

• i.e. as a thread finish a chunk, it is assigned the next chunk in the list.

• When no chunksize is specified, it defaults to 1.

14

GUIDED schedule
• GUIDED schedule is similar to DYNAMIC, but the chunks start off

large and get smaller exponentially.

• The size of the next chunk is proportional to the number of remaining
iterations divided by the number of threads.

• The chunksize specifies the minimum size of the chunks.

• When no chunksize is specified it defaults to 1.

15

DYNAMIC and GUIDED schedules

16

AUTO schedule
• Lets the runtime have full freedom to choose its own

assignment of iterations to threads
• If the parallel loop is executed many times, the runtime

can evolve a good schedule which has good load balance
and low overheads.

17

Choosing a schedule
When to use which schedule?

• STATIC best for load balanced loops - least overhead.

• STATIC,n good for loops with mild or smooth load imbalance, but can
induce overheads.

• DYNAMIC useful if iterations have widely varying loads, but ruins data
locality.

• GUIDED often less expensive than DYNAMIC, but beware of loops
where the first iterations are the most expensive!

• AUTO may be useful if the loop is executed many times over

18

Exercise

• Redo the Mandelbrot example using a worksharing do/for directive.

25

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

26

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

