Introduction to OpenMP

Lecture 2: OpenMP Fundamentals

CPCC

Overview

- Basic Concepts in OpenMP

- Compiling and running OpenMP programs

epcc 3

What is OpenMP?

- OpenMP is an API designed for programming shared memory
parallel computers.

- OpenMP uses the concepts of threads and tasks
- OpenMP is a set of extensions to Fortran, C and C++

- The extensions consist of:
- Compiler directives

- Runtime library routines

- Environment variables

epcc 4

Directives and sentinels

- A directive is a special line of source code with meaning only
to certain compilers.

- A directive is distinguished by a sentinel at the start of the line.

- OpenMP sentinels are:
- Fortran: ' SOMP
-C/C++: #pragma omp

- This means that OpenMP directives are ignored if the code is
compiled as regular sequential Fortran/C/C++.

epcc :

Parallel region

The parallel region is the basic parallel construct in
OpenMP.

A parallel region defines a section of a program.

Program begins execution on a single thread (the master
thread).

When the first parallel region is encountered, the master
thread creates a team of threads (fork/join model).

Every thread executes the statements which are inside
the parallel region

At the end of the parallel region, the master thread waits
for the other threads to finish, and continues executing
the next statements

epcc 6

Parallel region

Sequential part

Parallel region

Sequential part

Parallel region

Sequential part

CSPCC

PROGRAM FRED

' $OMP PARALLEL

'$OMP END PARALLEL

1 $OMP PARALLEL

1$OMP END PARALLEL

int main() {

#pragma omp parallel
{

#pragma omp parallel
{

Shared and private data

- Inside a parallel region, variables can either be shared or
private.

- All threads see the same copy of shared variables.
- All threads can read or write shared variables.

- Each thread has its own copy of private variables: these
are invisible to other threads.

- A private variable can only be read or written by its own
thread.

epcc 8

Parallel loops

In a parallel region, all threads execute the same code

OpenMP also has directives which indicate that work should be divided up
between threads, not replicated.

this is called worksharing

Since loops are the main source of parallelism in many applications,
OpenMP has extensive support for parallelising loops.

The are a number of options to control which loop iterations are executed
by which threads.

It is up to the programmer to ensure that the iterations of a parallel loop
are independent.

Only loops where the iteration count can be computed before the
execution of the loop begins can be parallelised in this way.

epcc 9

Synchronisation

- The main synchronisation concepts used in OpenMP are:

- Barrier
- all threads must arrive at a barrier before any thread can proceed past it
- e.g. delimiting phases of computation
- Critical region
- a section of code which only one thread at a time can enter
- e.g. modification of shared variables
- Atomic update

- an update to a variable which can be performed only by one thread at a
time

- e.g. modification of shared variables (special case)

epcc ’

Compiling and running OpenMP programs

- OpenMP is built-in to most of the compilers you are likely to use.

- To compile an OpenMP program you need to add a (compiler-specific) flag

to your compile and link commands.

- —fopenmp for gcc/gfortran
- —openmp for Intel compilers
- on by default in Cray compilers

- The number of threads which will be used is determined at runtime by the

OMP_NUM THREADS environment variable

- set this before you run the program
- .. export OMP NUM THREADS=4

- Run in the same way you would a sequential program
- type the name of the executable

cpcc)

Reusing this material

©0Ele

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must
distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

epcc ’

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

