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Introduction: TORUS

• Transport Of Radiation Using Stokes intensities


• An astrophysical radiation-hydrodynamics code


• Core algorithm is Monte-Carlo Radiation Transport on an 
adaptive grid


• Written in Fortran (modern style) and parallelised with 
OpenMP and MPI



Overview

1. Background and astrophysical applications


2. Algorithms and parallelisation


3. Parallel performance



Star formation
• Stars form from collapsing 

clouds of gas and dust 
(turbulence and self-gravity)


• Young stars are surrounded by a 
disc of gas and dust from which 
planets form


• Massive stars generate winds 
and radiation which influences 
their environment


• TORUS has been applied to a 
wide range of star formation 
problems

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA) 
https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula 

https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula


Challenges in star formation 
simulations

• Need to include a wide range of physics:


• hydrodynamics


• radiative feedback


• self-gravity


• magnetic fields


• Wide range of densities and spatial scales


• Complex geometries



Radiation transport
• When stars form they start to emit radiation (gravitational collapse 

then nuclear burning)


• Radiation heats surrounding material and influences its subsequent 
evolution


• Ionising radiation produces plasma which interacts with magnetic 
fields


• Also need to understand radiation transport to interpret 
observations: visible light, radio, infra-red, x-rays etc.


• Cases of practical interest are too complex to be solved 
analytically and are treated numerically 



Spatial representation: 
adaptive grid

• Star formation processes occur on a large range of spatial scales


• The spatial scale which determines key properties of radiative 
transfer can be very small compared to entire computational 
domain


• Radiative transfer needs to resolve edges (opacity gradients)


• Use an adaptive spatial grid to give sharp edges and wide range 
of spatial resolution


• Tree structured AMR: flexible representation - refine individual 
cells as required
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Cells (voxels) in grid are leaf nodes of the tree



Grid operations

• “Octal” derived type holds 
physical variables and 
pointers to child octals


• Traverse tree structure 
with recursive subroutine 
calls to follow pointers


• Carry out operations on 
leaf nodes



Monte-Carlo Radiative 
Transfer

• Core algorithm in TORUS is Monte-Carlo Radiative 
Transfer*


• A energy packets are propagated through the 
computational domain in random directions from sources


• Energy packets interact with dust and gas:


• scattering: change direction


• absorption: change direction and wavelength (depends 
on local temperature)

* Lucy L. B., 1999, Astronomy & Astrophysics, 344, 282



Energy packet 
generated by source 

with random direction 
and wavelength

Energy packet 
leaves grid

Return to 
generate next 
energy packet



Monte-Carlo Radiative 
Transfer

• Energy density (hence temperature) is calculated from the 
time an energy packet spend in a given grid cell


• Iterate to converge temperatures and radiation fields (re-
emission after absorption depends on temperature)


+ Enables treatment of complex geometries


+ Cells are sampled when they are crossed → sample optically 
thin regions


− Can be computationally expensive to achieve well converged 
solution



OpenMP Parallelisation
• Fortunately the algorithm is amenable to parallelisation


• Each energy packet can be independently propagated through the grid


• DO loop over energy packets is parallelised with OpenMP


• Grid is SHARED and updates to octal components are ATOMIC 


• Use DYNAMIC scheduling ensure load balancing



Performance and scaling 
study

• Investigate performance without making code 
modifications → practical advice on how to run TORUS


• Run on Exeter University cluster: 


• 20-cores/node (2x10 core Intel Broadwell @ 2.40GHz)


• 128GB RAM/node


• 4X EDR infiniband



Test case: 3D disc 
benchmark

• Calculates radiative equilibrium in disc of material around 
a star


• 3D cylindrical polar grid with 320,048 voxels (leaf-nodes)


• 3,200,480 energy packets per iteration


• Representative of a typical TORUS Monte-Carlo 
calculation and large enough problem to be realistic


• Record average time for an iteration of the MCRT 
algorithm (>99.9% of run time in serial run without I/O)



Compilers and affinity

• OpenMP performance tests:


• Intel (ifort 16.0.3) and GNU (gfortran 5.4.0)


• Compiler flags: optimisation and architecture targeting


• Affinity: pinning threads to CPU cores using 
KMP_AFFINITY environment variable (Intel compiler)



Compiler Flags Threads Affinity Time (s) Norm. 
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04

ifort 16.0.3 -O3 -xCORE-AVX2 20 none 196 1.13

ifort 16.0.3 -O3 20 compact 173 1

ifort 16.0.3 -O3 20 scatter 176 1.01

ifort 16.0.3 -O3 10 compact 216 1.25

ifort 16.0.3 -O3 10 scatter 231 1.36

OpenMP-only: compilers and flags

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)
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Compiler Flags Threads Affinity Time (s) Norm. 
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04
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Compiler Flags Threads Affinity Time (s) Norm. 
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04

ifort 16.0.3 -O3 -xCORE-AVX2 20 none 196 1.13

ifort 16.0.3 -O3 20 compact 173 1

ifort 16.0.3 -O3 20 scatter 176 1.01

ifort 16.0.3 -O3 10 compact 216 1.25

ifort 16.0.3 -O3 10 scatter 231 1.36

Thread placement on half-populated node
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Compilers and affinity

• Intel compiler with -O3 and compact affinity gives best 
single node OpenMP performance


• Performance is better without -xCORE-AVX2 flag


• Compact affinity better than scatter on half populated 
node


• Compiler, optimisation and affinity effects ~10% on a fully 
populated node - potentially a quick performance gain



Single node scaling
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Parallelism Time(s) Normalised time Memory footprint 
(GB)

OpenMP

(20 threads) 179.9 1.59 1.73

MPI

(20 processes) 112.8 1 34.9

Hybrid 

(2 MPI x 10 OpenMP) 120.8 1.07 3.47

Single node OpenMP vs MPI vs hybrid

+7%

20x

2.0x

+59%

-genv I_MPI_PIN_DOMAIN socket (-genv I_MPI_PIN_DOMAIN omp for 4 MPI procs per node)



Single node results
• No clear winner for best parallelisation:


• OpenMP for ease of use and minimum memory foot print


• MPI gives better performance than OpenMP but memory 
footprint is much larger


• Hybrid OpenMP-MPI reduces memory footprint with good 
performance but harder to set up correctly than OpenMP 
or MPI alone


• Can’t predict where energy packets will go so can’t partition 
grid using first touch memory allocation



Multi-node scaling
Hybrid scales 

better than 
pure MPI

Parallel fraction = 0.99467 
 Max speed up = 188

 0

 20

 40

 60

 80

 100

 120

 20  40  60  80  100  120  140  160  180  200  220  240  260  280  300  320

Sp
ee

d 
up

No. of procs

Hybrid 2x10
MPI

Amdahl scaling



Isambard

• EPSRC tier-2 facility 


• GW4 consortium (Bath, 
Bristol, Cardiff, Exeter 
Universities), Met Office and 
Cray


• ARMv8 + KNLs and GPUs



Isambard
• Investigated single node performance on ARMv8


• 2x 32-core Cavium ThunderX2 @ 2.2 GHz


• 64 cores x 4 way SMT → 256 h/w threads per node


• gfortran 6.1.0


• OpenMP 4.0 affinity mechanism: 


• export OMP_PLACES=core|thread


• export OMP_BIND=close|spread



No. of 
OpenMP 
threads

h/w threads 
per core PLACES BIND Time (s) Norm. 

time

256 4 - - 102 1

256 4 threads close 111 1.09

256 4 cores close 116 1.14

256 4 sockets close 104 1.02

128 2 - - 103 1.01

128 2 sockets spread 102 1

128 2 cores close 102 1

128 2 threads spread 135 1.32

Pure OpenMP on ThunderX2 (ARMv8): affinity



No. of 
OpenMP 
threads

h/w threads 
per core PLACES BIND Time (s) Norm. 

time

256 4 cores close 116 1.14

128 2 cores close 102 1

64 1 cores close 125 1.23

32 1 cores close 203 1.99

32 1 cores spread 223 2.19

Pure OpenMP on ThunderX2 (ARMv8)
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Hybrid MPI-OpenMP

• On x86 hybrid performed better than pure OpenMP on a  
fully populated node. What about ARM?


• OpenMPI 3.0.0, gfortran 6.1


• mpirun --bind-to socket --npersocket 1 -np 2 ./torus.gfortran

• export OMP_PLACES=core; export OMP_BIND=close



No. of MPI 
processes Threads/core No. of OpenMP 

threads Time (s)

2 1 32 113

2 2 64 88

2 4 128 72

4 1 16 169

4 2 32 104

4 4 64 87

Best pure OpenMP time on ARMv8 is 102s



Conclusions
• OpenMP has been very important in TORUS (memory 

footprint)


• NUMA effects are significant in two socket nodes


• Hybrid OpenMP-MPI (OpenMP within a socket) gives 
better performance than whole-node OpenMP


• Hybrid OpenMP-MPI scales better than pure-MPI with 
smaller memory footprint


• Code paper: Harries, Haworth, Acreman and Ali (in prep)


