UNIVERSITY OF

E ETER OpenMP Users’ Conference 2018

The TORUS radiative transfer
code: OpenMP implementation
and performance

David Acreman, University of Exeter
Tim Harries, University of Exeter
Tom Haworth, Imperial College London



Introduction: TORUS

Transport Of Radiation Using Stokes intensities
An astrophysical radiation-hydrodynamics code

Core algorithm is Monte-Carlo Radiation Transport on an
adaptive grid

Written in Fortran (modern style) and parallelised with
OpenMP and MPI



Overview

1. Background and astrophysical applications
2. Algorithms and parallelisation

3. Parallel performance



Star formation

Stars form from collapsing
clouds of gas and dust
(turbulence and self-gravity)

Young stars are surrounded by a
disc of gas and dust from which
planets form

Massive stars generate winds
and radiation which influences
their environment

TORUS has been applied to a
wide range of star formation
problems

Credits: NASA, ESA and the Hubble Heritage Team (STScl/AURA)
https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula



https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula

Challenges in star formation
simulations

e Need to include a wide range of physics:
 hydrodynamics
e radiative feedback
e self-gravity
e magnetic fields
e Wide range of densities and spatial scales

e Complex geometries



Radiation transport

When stars form they start to emit radiation (gravitational collapse
then nuclear burning)

Radiation heats surrounding material and influences its subsequent
evolution

lonising radiation produces plasma which interacts with magnetic
fields

Also need to understand radiation transport to interpret
observations: visible light, radio, infra-red, x-rays etc.

Cases of practical interest are too complex to be solved
analytically and are treated numerically



Spatial representation:
adaptive grid
Star formation processes occur on a large range of spatial scales

The spatial scale which determines key properties of radiative
transfer can be very small compared to entire computational
domain

Radiative transfer needs to resolve edges (opacity gradients)

Use an adaptive spatial grid to give sharp edges and wide range
of spatial resolution

Tree structured AMR: flexible representation - refine individual
cells as required



Cells (voxels) in grid are leaf nodes of the tree



Grid operations

e “Octal” derived type holds
physical variables and
pointers to child octals

e [raverse tree structure
with recursive subroutine
calls to follow pointers

e Carry out operations on
leaf nodes

recursive subroutine zeroAdot(thisOctal)
type(octal), pointer :: thisOctal
type(octal), pointer :: child

integer :: subcell, 1

do subcell = 1, thisOctal¥%maxChildren
1f (thisOctal¥hasChild(subcell)) then
do 1 = 1, thisOctal¥%nChildren
1f (thisOctal¥%indexChild(1) == subcell) then
child => thisOctal%child(1)
call zeroAdot(child)
exilt
end 1f
end do
else
thisOctal%aDot(subcell) = 0.d0
endif
enddo
end subroutine zeroAdot



Monte-Carlo Radiative
Transfer

e Core algorithm in TORUS is Monte-Carlo Radiative
Transfer”

e A energy packets are propagated through the
computational domain in random directions from sources

e Energy packets interact with dust and gas:
e scattering: change direction

e absorption: change direction and wavelength (depends
on local temperature)

* Lucy L. B., 1999, Astronomy & Astrophysics, 344, 282



Energy packet
leaves grid

Return to
generate next
energy packet

Energy packet
generated by source
with random direction <
and wavelength




Monte-Carlo Radiative
Transfer

 Energy density (hence temperature) is calculated from the
time an energy packet spend in a given grid cell

e |terate to converge temperatures and radiation fields (re-
emission after absorption depends on temperature)

+ Enables treatment of complex geometries

+ Cells are sampled when they are crossed — sample optically
thin regions

— Can be computationally expensive to achieve well converged
solution



OpenMP Parallelisation

* Fortunately the algorithm is amenable to parallelisation

 Each energy packet can be independently propagated through the grid
* DO loop over energy packets is parallelised with OpenMP

 Grid is SHARED and updates to octal components are ATOMIC

e Use DYNAMIC scheduling ensure load balancing

1$OMP ATOMIC
thisOctal¥distanceGrid(subcell) = thisOctal¥distanceGrid(subcell) + tVal_db * kappaAbsdb * packetWeight
1f (usePAH) then
1$OMP ATOMIC
thisOctal%aDotPAH(subcell) = thisOctal%adotPAH(subcell) + tVal_db * getkappaAbsPAH(thisFreq) * packetWeight
endif
1$OMP ATOMIC
thisOctal¥nCrossings(subcell) = thisOctal¥%nCrossings(subcell) + 1



Performance and scaling
study

Investigate performance without making code
modifications — practical advice on how to run TORUS

Run on Exeter University cluster:
e 20-cores/node (2x10 core Intel Broadwell @ 2.40GHz)
e 128GB RAM/node

e 4X EDR infiniband



Test case: 3D disc
benchmark

Calculates radiative equilibrium in disc of material around
a star

3D cylindrical polar grid with 320,048 voxels (leaf-nodes)
3,200,480 energy packets per iteration

Representative of a typical TORUS Monte-Carlo
calculation and large enough problem to be realistic

Record average time for an iteration of the MCRT
algorithm (>99.9% of run time in serial run without |/O)



Compilers and affinity

e OpenMP performance tests:
e Intel (ifort 16.0.3) and GNU (gfortran 5.4.0)

e Compiler flags: optimisation and architecture targeting

e Affinity: pinning threads to CPU cores using
KMP AFFINITY environment variable (Intel compiler)



Normalised to
fastest run

OpenMP-only: compilers and flags

Compiler Threads Affinity Time (s) Nf)rm.
time
gfortran 5.4.0
| .
gfortran 5.4.0 Q2
Q
. £
ifort 16.0.3 o
(&
ifort 16.0.3
ifort 16.0.3
ifort 16.0.3 -03 20 compact 173 1
ifort 16.0.3 -03 20 scatter 176 1.01
ifort 16.0.3 -03 10 compact 216 1.25
ifort 16.0.3 -03 10 scatter 231 1.36

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)

optimisations
~10 %



OpenMP-only: affinity

Compiler Threads Affinity Time (s)
gfortran 5.4.0 -02 20 none 193
gfortran 5.4.0 -0O3 20 none 192

ifort 16.0.3 -02 20 none 196

ifort 16.0.3 -0O3 20 none 180

ifort 16.0.3 -0O3 -xCORE-AVX2 20 none 196

ifort 16.0.3 compact 173

ifort 16.0.3 scatter 176

ifort 16.0.3 -03 10 compact 216

ifort 16.0.3 -0O3 10 scatter 231

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)

Norm.

time

1.11

1.11

1.13

1.04

1.13

1.25

1.36

Affinity

~few %



Thread placement on half-populated node

Compiler Threads Affinity

gfortran 5.4.0 -02 20 none 193 1.11

gfortran 5.4.0 -0O3 20 none 192 1.11
ifort 16.0.3 -02 20 none 196 1.13
ifort 16.0.3 -0O3 20 none 180 1.04
ifort 16.0.3 -03 -xCORE-AVX2 20 none 196 1.13
ifort 16.0.3 -03 20 compact 173 1
ifort 16.0.3 -0O3 20 scatter 176 1.01

ifort 16.0.3 compact

NUMA
~10 %

ifort 16.0.3 scatter 231

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)



}
!
3
i
i
1
1
!




Compilers and affinity

Intel compiler with =03 and compact affinity gives best
single node OpenMP performance

Performance is better without -xCORE-AVX2 flag

Compact affinity better than scatter on half populated
node

Compiler, optimisation and affinity effects ~10% on a fully
populated node - potentially a quick performance gain



Single node scaling

20 T

18

16 [

14

12 |

Speed up

OpenMP —+—

MPI

|deal scaling
Amdahl scaling

Parallel fraction = 0.99467

Max speed up = 188

10

No. of procs

12

14

16

18

20



Single node OpenMP vs MPI vs hybrid

Memory footprint

Parallelism Normalised time (GB)

OpenMP

20 threads) 179.9 1.59 1.73
+59% 20x
MPI v
20 processes) 112.8 1 34.9
+7°/o 2.0X
) v v
Hybrid 120.8 1.07 3.47

(2 MPI x 10 OpenMP)

—genv I _MPI_PIN _DOMAIN socket (-genv I_MPI_PIN_DOMAIN omp for 4 MPI procs per node)



Single node results

* No clear winner for best parallelisation:

* OpenMP for ease of use and minimum memory foot print

e MPI gives better performance than OpenMP but memory
footprint is much larger

 Hybrid OpenMP-MPI reduces memory footprint with good
performance but harder to set up correctly than OpenMP
or MPI alone

 Can’t predict where energy packets will go so can’t partition
grid using first touch memory allocation



120

100

80
o
o
2 60
(b
o
(@)

40

20

Multi- node scallng

Hybrld 2x10 —
MPI

Amdahl scaling

o

7

*

p

20 40 o60 80 100 120 140 160 180 200 220 240 260 280 300 320

Parallel fraction = 0.99467
Max speed up = 188

No. of procs

Hybrid scales
better than
pure MPI



Isambard

e EPSRC tier-2 facility

e GW4 consortium (Bath,
Bristol, Cardiff, Exeter
Universities), Met Office and
Cray

e ARMv8 + KNLs and GPUs



lsambard

* |nvestigated single node performance on ARMv8

e 2x 32-core Cavium ThunderX2 @ 2.2 GHz

* 64 cores x 4 way SMT — 256 h/w threads per node
e gfortran 6.1.0
e OpenMP 4.0 affinity mechanism:

e export OMP PLACES=core|thread

* export OMP BIND=close|spread



Pure OpenMP on ThunderX2 (ARMv8): affinity

No. of h/w threads

OpenMP per core HLaAelas
256 4 - - 102 1
256 4 threads close 111 1.09
256 4 cores close 116 1.14
256 4 sockets close 104 1.02
128 2 - - 103 1.01
128 2 sockets spread 102 1
128 2 cores close 102 1

128 2 threads spread 135 1.32



Pure OpenMP on ThunderX2 (ARMv8)

No. of
OpenMP er core PLACES
threads P

h/w threads

256 4 cores close 116 1.14

64 1 cores close 125 1.23

32 1 cores close 203 1.99

NUMA
~10 %

32 1 cores spread 223 2.19



Hybrid MPI-OpenMP

On x86 hybrid performed better than pure OpenMP on a
fully populated node. What about ARM?

OpenMPI 3.0.0, gfortran 6.1

mpirun --bind-to socket --npersocket 1 -np 2 ./torus.gfortran

export OMP PLACES=core; export OMP BIND=close



No. of MPI No. of OpenMP

Threads/core

processes threads
2 1 32 113
2 2 64 88
2 4 128 72
4 1 16 169
4 2 32 104
4 4 64 87

Best pure OpenMP time on ARMvS8 is 102s



Conclusions

OpenMP has been very important in TORUS (memory
footprint)

NUMA effects are significant in two socket nodes

Hybrid OpenMP-MPI (OpenMP within a socket) gives
better performance than whole-node OpenMP

Hybrid OpenMP-MPI scales better than pure-MPI with
smaller memory footprint

Code paper: Harries, Haworth, Acreman and Ali (in prep)



