
The TORUS radiative transfer
code: OpenMP implementation

and performance
David Acreman, University of Exeter

Tim Harries, University of Exeter

Tom Haworth, Imperial College London

OpenMP Users’ Conference 2018

Introduction: TORUS

• Transport Of Radiation Using Stokes intensities

• An astrophysical radiation-hydrodynamics code

• Core algorithm is Monte-Carlo Radiation Transport on an
adaptive grid

• Written in Fortran (modern style) and parallelised with
OpenMP and MPI

Overview

1. Background and astrophysical applications

2. Algorithms and parallelisation

3. Parallel performance

Star formation
• Stars form from collapsing

clouds of gas and dust
(turbulence and self-gravity)

• Young stars are surrounded by a
disc of gas and dust from which
planets form

• Massive stars generate winds
and radiation which influences
their environment

• TORUS has been applied to a
wide range of star formation
problems

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula

https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula

Challenges in star formation
simulations

• Need to include a wide range of physics:

• hydrodynamics

• radiative feedback

• self-gravity

• magnetic fields

• Wide range of densities and spatial scales

• Complex geometries

Radiation transport
• When stars form they start to emit radiation (gravitational collapse

then nuclear burning)

• Radiation heats surrounding material and influences its subsequent
evolution

• Ionising radiation produces plasma which interacts with magnetic
fields

• Also need to understand radiation transport to interpret
observations: visible light, radio, infra-red, x-rays etc.

• Cases of practical interest are too complex to be solved
analytically and are treated numerically

Spatial representation:
adaptive grid

• Star formation processes occur on a large range of spatial scales

• The spatial scale which determines key properties of radiative
transfer can be very small compared to entire computational
domain

• Radiative transfer needs to resolve edges (opacity gradients)

• Use an adaptive spatial grid to give sharp edges and wide range
of spatial resolution

• Tree structured AMR: flexible representation - refine individual
cells as required

1

1
3 3
3 3

2 2

2

2 2

2 2

1 1 1 1

2 2 2 2 2 2 2 22

3 3 3 3

Cells (voxels) in grid are leaf nodes of the tree

Grid operations

• “Octal” derived type holds
physical variables and
pointers to child octals

• Traverse tree structure
with recursive subroutine
calls to follow pointers

• Carry out operations on
leaf nodes

Monte-Carlo Radiative
Transfer

• Core algorithm in TORUS is Monte-Carlo Radiative
Transfer*

• A energy packets are propagated through the
computational domain in random directions from sources

• Energy packets interact with dust and gas:

• scattering: change direction

• absorption: change direction and wavelength (depends
on local temperature)

* Lucy L. B., 1999, Astronomy & Astrophysics, 344, 282

Energy packet
generated by source

with random direction
and wavelength

Energy packet
leaves grid

Return to
generate next
energy packet

Monte-Carlo Radiative
Transfer

• Energy density (hence temperature) is calculated from the
time an energy packet spend in a given grid cell

• Iterate to converge temperatures and radiation fields (re-
emission after absorption depends on temperature)

+ Enables treatment of complex geometries

+ Cells are sampled when they are crossed → sample optically
thin regions

− Can be computationally expensive to achieve well converged
solution

OpenMP Parallelisation
• Fortunately the algorithm is amenable to parallelisation

• Each energy packet can be independently propagated through the grid

• DO loop over energy packets is parallelised with OpenMP

• Grid is SHARED and updates to octal components are ATOMIC

• Use DYNAMIC scheduling ensure load balancing

Performance and scaling
study

• Investigate performance without making code
modifications → practical advice on how to run TORUS

• Run on Exeter University cluster:

• 20-cores/node (2x10 core Intel Broadwell @ 2.40GHz)

• 128GB RAM/node

• 4X EDR infiniband

Test case: 3D disc
benchmark

• Calculates radiative equilibrium in disc of material around
a star

• 3D cylindrical polar grid with 320,048 voxels (leaf-nodes)

• 3,200,480 energy packets per iteration

• Representative of a typical TORUS Monte-Carlo
calculation and large enough problem to be realistic

• Record average time for an iteration of the MCRT
algorithm (>99.9% of run time in serial run without I/O)

Compilers and affinity

• OpenMP performance tests:

• Intel (ifort 16.0.3) and GNU (gfortran 5.4.0)

• Compiler flags: optimisation and architecture targeting

• Affinity: pinning threads to CPU cores using
KMP_AFFINITY environment variable (Intel compiler)

Compiler Flags Threads Affinity Time (s) Norm.
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04

ifort 16.0.3 -O3 -xCORE-AVX2 20 none 196 1.13

ifort 16.0.3 -O3 20 compact 173 1

ifort 16.0.3 -O3 20 scatter 176 1.01

ifort 16.0.3 -O3 10 compact 216 1.25

ifort 16.0.3 -O3 10 scatter 231 1.36

OpenMP-only: compilers and flags

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)

C
om

pi
le

r
op

tim
is

at
io

ns

~1
0

%

Normalised to
fastest run

Compiler Flags Threads Affinity Time (s) Norm.
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04

ifort 16.0.3 -O3 -xCORE-AVX2 20 none 196 1.13

ifort 16.0.3 -O3 20 compact 173 1

ifort 16.0.3 -O3 20 scatter 176 1.01

ifort 16.0.3 -O3 10 compact 216 1.25

ifort 16.0.3 -O3 10 scatter 231 1.36

OpenMP-only: affinity

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)

Affi
ni

ty

~f
ew

 %

Compiler Flags Threads Affinity Time (s) Norm.
time

gfortran 5.4.0 -O2 20 none 193 1.11

gfortran 5.4.0 -O3 20 none 192 1.11

ifort 16.0.3 -O2 20 none 196 1.13

ifort 16.0.3 -O3 20 none 180 1.04

ifort 16.0.3 -O3 -xCORE-AVX2 20 none 196 1.13

ifort 16.0.3 -O3 20 compact 173 1

ifort 16.0.3 -O3 20 scatter 176 1.01

ifort 16.0.3 -O3 10 compact 216 1.25

ifort 16.0.3 -O3 10 scatter 231 1.36

Thread placement on half-populated node

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Broadwell)

N
U

M
A

~1
0

%

CPU

CPU

DIMMS

DIMMS

Compilers and affinity

• Intel compiler with -O3 and compact affinity gives best
single node OpenMP performance

• Performance is better without -xCORE-AVX2 flag

• Compact affinity better than scatter on half populated
node

• Compiler, optimisation and affinity effects ~10% on a fully
populated node - potentially a quick performance gain

Single node scaling

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16 18 20

Sp
ee

d
up

No. of procs

OpenMP
MPI

Ideal scaling
Amdahl scaling

Parallel fraction = 0.99467
 Max speed up = 188

Parallelism Time(s) Normalised time Memory footprint
(GB)

OpenMP

(20 threads) 179.9 1.59 1.73

MPI

(20 processes) 112.8 1 34.9

Hybrid

(2 MPI x 10 OpenMP) 120.8 1.07 3.47

Single node OpenMP vs MPI vs hybrid

+7%

20x

2.0x

+59%

-genv I_MPI_PIN_DOMAIN socket (-genv I_MPI_PIN_DOMAIN omp for 4 MPI procs per node)

Single node results
• No clear winner for best parallelisation:

• OpenMP for ease of use and minimum memory foot print

• MPI gives better performance than OpenMP but memory
footprint is much larger

• Hybrid OpenMP-MPI reduces memory footprint with good
performance but harder to set up correctly than OpenMP
or MPI alone

• Can’t predict where energy packets will go so can’t partition
grid using first touch memory allocation

Multi-node scaling
Hybrid scales

better than
pure MPI

Parallel fraction = 0.99467
 Max speed up = 188

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Sp
ee

d
up

No. of procs

Hybrid 2x10
MPI

Amdahl scaling

Isambard

• EPSRC tier-2 facility

• GW4 consortium (Bath,
Bristol, Cardiff, Exeter
Universities), Met Office and
Cray

• ARMv8 + KNLs and GPUs

Isambard
• Investigated single node performance on ARMv8

• 2x 32-core Cavium ThunderX2 @ 2.2 GHz

• 64 cores x 4 way SMT → 256 h/w threads per node

• gfortran 6.1.0

• OpenMP 4.0 affinity mechanism:

• export OMP_PLACES=core|thread

• export OMP_BIND=close|spread

No. of
OpenMP
threads

h/w threads
per core PLACES BIND Time (s) Norm.

time

256 4 - - 102 1

256 4 threads close 111 1.09

256 4 cores close 116 1.14

256 4 sockets close 104 1.02

128 2 - - 103 1.01

128 2 sockets spread 102 1

128 2 cores close 102 1

128 2 threads spread 135 1.32

Pure OpenMP on ThunderX2 (ARMv8): affinity

No. of
OpenMP
threads

h/w threads
per core PLACES BIND Time (s) Norm.

time

256 4 cores close 116 1.14

128 2 cores close 102 1

64 1 cores close 125 1.23

32 1 cores close 203 1.99

32 1 cores spread 223 2.19

Pure OpenMP on ThunderX2 (ARMv8)

N
U

M
A

~1
0

%

Hybrid MPI-OpenMP

• On x86 hybrid performed better than pure OpenMP on a
fully populated node. What about ARM?

• OpenMPI 3.0.0, gfortran 6.1

• mpirun --bind-to socket --npersocket 1 -np 2 ./torus.gfortran

• export OMP_PLACES=core; export OMP_BIND=close

No. of MPI
processes Threads/core No. of OpenMP

threads Time (s)

2 1 32 113

2 2 64 88

2 4 128 72

4 1 16 169

4 2 32 104

4 4 64 87

Best pure OpenMP time on ARMv8 is 102s

Conclusions
• OpenMP has been very important in TORUS (memory

footprint)

• NUMA effects are significant in two socket nodes

• Hybrid OpenMP-MPI (OpenMP within a socket) gives
better performance than whole-node OpenMP

• Hybrid OpenMP-MPI scales better than pure-MPI with
smaller memory footprint

• Code paper: Harries, Haworth, Acreman and Ali (in prep)

